Showing posts with label Posted by Rishav Bose. Show all posts
Showing posts with label Posted by Rishav Bose. Show all posts

Wednesday, 4 March 2015

Green Energy

Google co-founder Larry Page is fond of saying, that if you choose a harder problem to tackle, you’ll have less competition. This philosophy has taken a plentitude of their conceptions to the moon: a translation engine that knows 80 languages, the world’s greatest search engine, self-driving cars, and the wearable computer system called Google Glass just to name a few.
Then the technology behemoth decided to tackle the world’s climate and energy sector. After committing tremendously large amounts of resources for the cause, it succeeded in establishing a few of the world’s most efficient data centers, purchased large quantities of renewable energy, and offset what remained of its carbon footprint.
When the ostentatiously ambitious RE<C in 2007 was established, we all may have expected another “moonshot” from the tech giants. But unfortunately that never really left the earth’s orbit. In 2011 Google put curtains down to the initiative which had a primary aim of making renewable energy compete with the coal industry. Two of their engineers Ross Koningstein and David Fork stated that “Trying to combat climate change exclusively with today’s renewable energy technologies simply won’t work; we need a fundamentally different approach.”
Following the aforementioned decision to suspend their R&D efforts in RE<C, Google has directly invested more than $1 billion directly in solar and wind projects. The company succeeded in acquiring enough renewable energy to offset its emissions. Google’s efforts have also brought down the average cost of renewables to rival the cost of construction of coal plants.
“You’d think the thrill might wear off this whole renewable energy investing thing after a while. Nope—we’re still as into it as ever,” stated the company buoyantly in a blog post last fall.
That been said, Google has been using renewable energy to power 35% of their operations, and are striving to look  for ways to ameliorate the use of clean energy. This includes trying new, innovative technology at their offices and purchasing green power near their data centers.


In addition to 1.9 MW solar arrays, other forms of renewable energy have been incorporated. This includes running a 970 kW cogeneration unit off local landfill gas, which not only removes the methane, a particularly potent greenhouse gas, but converts it into electricity and heat that are used on the campus. Efficient ground source heat pumps and solar water heating on office buildings in Mountain View, Hyderabad, and Tel Aviv have been set up.
Google has also signed six large-scale Power Purchase Agreements (PPAs) that are long-term financial commitments to buy renewable energy from specific facilities. 
Google has also made agreements to fund over $1.5 billion in clean energy wind and solar projects. Some of them are:
·         Regulus: Repurposing an oil and gas field for renewable energy
  • Panhandle 2 Wind Farm: financing wind in Texas
  • Recurrent Energy: solar facilities in California and Arizona
  • Jasper Power Project: investing in South African solar
  • Spinning Spur Wind Farm: investing in West Texas wind
  • Rippey Wind Farm: financing wind power in Iowa
  • SolarCity: solar for thousands of residential rooftops
  • Atlantic Wind Connection: a superhighway for clean energy transmission
  • Alta Wind Energy Center: harnessing winds of the Mojave
  • Shepherd’s Flat: one of the world’s largest wind farms
  • Photovoltaics in Germany: investing in clean energy overseas
But the most exciting one for me is that Google X is acquiring the high altitude wind startup Makani Power.

Makani Power has been fabricating and testing a new design of wind turbine that is attached to a tether (that could be 600 meters long) and which rotates high above the ground, capturing wind that is stronger and more consistent than what is typically found on the ground. The idea behind the innovation is that capturing high altitude wind could be cheaper, more efficient, and more apropos for certain environments like offshore than traditional wind turbines.

This particular idea does sound crazy. But I unequivocally believe that we need crazy and innovative ideas if we want to move towards a more sustainable and greener future because as Steve Jobs said
“…because the ones who are crazy enough to think that they can change the world, are the ones who do.”


Sunday, 22 February 2015

Why we need self driving cars

After being enlightened about Google’s new self-driving electric car, I spent my whole afternoon cheating on FIFA whilst reading about this god-sent technology.

Instead of a steering wheel and pedals this battery-powered electric vehicle has as a stop-go button. These novel prototypes have a plastic build for the most part. But they have limited speed as a battery/electric propulsion system restricts the maximum speed to about 40kph (25 mph). Google has planned to manufacture around 200 of these extremely cute, mostly-plastic cars over the next year, albeit restricting road testing to California for the next couple of years.
Well, now without any further ado, allow me to tell you why we need self-driving cars:

1.      1.First and foremost, we humans are flawed beings! We snooze, we text, we eat behind the wheel. Not to mention drunk imbeciles revolting against speed limits and traffic rules! Road accidents have become such a primary cause of death in our country that probably even the “Grim Reaper” is begging for mercy. More than 100,000 deaths due car accidents and there are dimwits who’ve still failed to learn.

2.We need these cars to take over roads soon for there is definitely a plentitude from our flawed race who’ll follow suit!
2.      Now, questions like “how much will these cars cost?” will arise. But instead of thinking superficially, we should delve deeper and look at the fact that there’s a plethora of disabled people in the world who work. We can’t ignore how this technology could transform the lives of the elderly or the disabled.

.
3.      3.The cars use a mixture of 3D laser-mapping, GPS, and radar to analyze and interpret their surroundings. The radar is interesting as it allows the car to see through objects, instead of relying on line-of-sight. As of now they can’t process a variety of complex situations. But, Google is hoping that with significant development, eventually the cars will be able to handle all of this as well (or better) than a human can.

4.      4.These cars are adorable!
If you take other EVs into consideration like the Tesla Model S or the Toyota Prius, they have a more aggressive and demeaning stance. And the most intriguing thing is that these cars were designed to look so endearing. Why so? Well, the answer to that is human psychology.  Our brains are hardwired to treat inanimate or animate objects with utmost care, caution and reverence if they resemble living things because our moral compasses would snap into place
5.      
      5.There’ll definitely be myriad skeptics who’ll think how autonomous vehicles could take over the highway. But what they need to understand is that a robot is differentiating cars from pedestrians. Millions of photons are being fired from a laser and interpreting, processing, and reacting to the hand signals of a biker, while doing so. We need to understand that instead of an organic brain which has had millions of years to evolve and yet fumbles at intersections, an artificial brain which was born less than a decade will be our chauffer. And it obviously needs to evolve.
      So why don’t we ignore some temporary shortcomings and thank Google for trying to eliminate human error from a chore which has been entirely controlled by humans for decades.
Let’s embrace innovation and get ready for a revolution in transportation.









Thursday, 5 February 2015

The wonder material

Curiosity driven research-that’s what led to the inception of the wonder material on a serendipitous evening in 2002, when Dr. Andre Geim was pondering about Carbon. He contemplated about how ultra thin layers of Carbon might behave under experimental conditions. Unequivocally, Graphite was the most favorable material to work with, but the general fashion to isolate extremely thin layers would overheat the material, ultimately destroying it. Geim’s “scotch-tape” technique would go on to become renowned for isolating the world’s two dimensional material: a layer of carbon only an atom thick which under an atomic microscope, resembled a flat lattice of hexagons linked in a honeycomb pattern. This was the birth of Graphene.


Soon after, Dr. Andre Geim and Konstantin Novoselov started tinkering with Graphene. Over the next couple of years, a series of experiments revealed some stupefying properties of the material. Its unique structure lets electrons flow unfettered through the lattice at phenomenal speeds. They found out that Graphene would be able to conduct 1000 times more electricity that Copper.  The elfin material also exhibited field effect (the response that some materials show when placed near an electric field, which allows scientists to control the conductivity. Field effect-one of the defining characteristics of silicon, used in computer chips). This hinted that Graphene could substitute Silicon in the future.
In October, 2004, their paper, “Electric Field Effect in Atomically Thin Carbon Films,” was published in Science, and it astonished scientists. Youngjoon Gil, the executive vice-president of the Samsung Advanced Institute of Technology stated: “It was as if science fiction had become reality.” Six years later in 2010, Geim and Novoselov were awarded the Nobel Prize in Physics.
 James Tour, a research worker at Rice University stated that “mobility” with which electronic information can flow across graphene’s surface is the most tantalizing of Graphene’s properties described in Geim and Novoselov’s paper. “The slow step in our computers is moving information from point A to point B,” Tour said. “Now you’ve taken the slow step, the biggest hurdle in silicon electronics, and you’ve introduced a new material and—boom! All of a sudden, you’re increasing speed not by a factor of ten but by a factor of a hundred, possibly even more.” This has given the much needed boost to the semiconductor industry which has been slogging to keep up with Moore’s law devised by Gordon Moore (Co-founder of Intel). He predicted that every two years the density and effectiveness of computer chips would double. Engineers have been able to keep up with Moore’s law for five decades. But there’s a limit. Shrinking the chip too much, would move its transistors too close together, and silicon stops working. Soon, silicon chips may no longer be able to keep pace with Moore’s Law. Graphene, could offer a solution.
But it’s not just the computer and electronics industry that will be beneficiaries of a possible Graphene revolution.
Tour has sold patents for a graphene-infused paint whose conductivity may abet in removing ice from helicopter blades, fluids to improve efficiency of oil drills, and graphene-based materials to make the inflatable slides and life rafts used in airplanes. He pointed out that it is the only substance on the earth which is entirely impermeable to gas and it barely weighs anything. Lighter rafts and slides would help airline companies save millions of dollars a year on fuel.
A certain Graphene-based gel is being experimented with as a scaffold for spinal-cord injuries. Instead of just having a nonfunctional scaffold material, having something that’s electrically conductive helps the nerve cells to communicate electrically and connect with each other. This has been successfully tested on lab rats whose hind legs had been paralyzed. Bionic devices that allow paraplegics to reuse their limbs may not be science fiction for too long.
When oxygen and hydrogen molecules were bonded to Graphene, Graphene oxide came into existence-something which may solve our problems of radioactive waste disposal, as Graphene Oxide binds with the radioactive materials, forming a sludge that can be scooped away without much ado.
Scientists at MIT are developing a graphene filter covered with holes so tiny that they will only allow water to pass and will keep the salt out. Desalinization of salt water may have never been so simple had it not been for Graphene.
In Marvel Comics' Superior Ironman #2, the armored avenger-Tony Stark adorned an all-white armour instead of the familiar red and gold. Significantly, this new Ironman suit has no faceplate. 
Well, not exactly. As it is only one atom thick, graphene passes 97% of visible light, making it more transparent than most glasses, so we can indeed see his face through this thin, carbon "faceplate."


And maybe, just maybe, we may see our armies wearing these rather attractive suits made of Graphene. But could it be effective in protecting our soldiers? Experiments have proved that thin multi-layers of graphene, no more than a hundred atoms thick, are indeed ten times more "bullet-proof" than steel.
Wow. One material with myriad applications and I have barely been able to write about anything.
Adjectives that can be used for Graphene: elfin, wondrous, sublime, stupendous.... I could probably go on forever.
Graphene may soon spell the beginning of another technological and industrial revolution. Well, the future looks bright for all of us and especially for those who slavishly devote themselves to technology.
So, let us all bask in the glory of “THE WONDER MATERIAL”.