Showing posts with label Posted by Atul Aditya. Show all posts
Showing posts with label Posted by Atul Aditya. Show all posts

Thursday, 12 March 2015

Smart healthcare

A long time ago, a revolution took place in the field of healthcare. Human anatomy was recognized as a science, and doctors operating on people were started to be held in high esteem. Healthy living habits were generated and spread through the masses, but unfortunately were never fully realized.
Living in India, we know that even though our country is one of the leading nations in healthcare research, much of its rural population rarely has basic healthcare available to it. Part of the problem lies in the fact that the healthcare budget of our country is very low in comparison to other nations. That is the why many of the citizens still die of diseases that could be easily cured. Many people die without ever realizing there was something wrong with them, or they don’t find out about it until it’s too late. Some can’t keep a proper tab on their situation because they can’t get regular checkups and ultimately suffer for it.  If only there was a way we could stop this, a way that could be implemented in our country’s rather small healthcare budget and a limited number of doctors, a way accessible for all, a cost-effective way. A smart way.
Enter the world of smart healthcare. A way to automate and expand the better standard of living modern technology has been introduced to even the remotest of areas. Let’s consider the scenario of a village that does have basic mobile connectivity, a rudimentary healthcare system and a bunch of literate people. By itself it can’t diagnose serious diseases, especially the ones that are disguised as something very normal, like swine flu whose most symptoms are consistent with common cold. But that system when paired with an expert on video chat, using mobile connectivity via a tablet etc. can help save many lives in the village and contain that disease. Called the tele-health it is the most effective system for inducing cheap and reliable healthcare, not just in India, but in fact in countless countries by simply eliminating physical presence.
But that’s not all, for smart healthcare comes with a variety of devices that make us healthier every day. Pedometer is one of the most common example of these devices. By telling us how much we actually ran or walked in a day, not only does it help us track our fitness, but also motivates us to be healthier. And now with introduction of smartwatches and smart bands like Fitbit, it’s easier than ever, as the device now simply lives in these everyday gadgets. Talking about these gadgets, they even measure heart rate through the day, which is beneficial for people having heart diseases or hypertension as they detect and trigger a warning if something starts going wrong, potentially saving hundreds of lives.
Same goes for specially made bands for people suffering with epilepsy, cancer or some terminal disease, which trigger an alarm and send location data of patient to their family members in case of an emergency. One of the most revolutionary change has been brought into diabetes treatment with the introduction of test strips which detect blood glucose level instantly and can be used by anyone enabling the patients to keep their vitals steady and under check.
There also are almost similar methods, using which life threatening diseases such as AIDS can be diagnosed quickly and cheaply. Smart devices such as these are going to make healthcare better everywhere and cheaper, and also expand the reach of system to the remotest areas. What makes it so powerful is that it can do all this by simply using the current system.


Sunday, 1 March 2015

On an epic journey of Science: Interstellar 2



In the last part, we got to know about the astounding science behind the wormhole. But that’s not all, Interstellar’s greatest spectacle is its blackhole and the accretion disk surrounding it. A major plot point of the movie is the time dilation effect experienced near the blackhole. Kip Thorne, Caltech physicist and theorist, as well as the scientific advisor for Interstellar told them straight off the bat, that to accomplish such a time dilation effect realistically on a massive scale, they would need a humongous blackhole, or as properly termed in astrophysics, a supermassive blackhole. This kind of supermassive blackholes  are generally found in the center of galaxies, and keep the galaxies rotating. To show such a massive blackhole with extreme mathematical accuracy and its gigantic size when being shown against the tiny human spaceship was real hard work and to portray it realistically, 3D was written off.
The blackhole that was generated using Thorne’s calculation was extremely big, and if compared in size to our solar system, the body itself would extend up to earth’s orbit and its accretion disks beyond the orbit of mars. This was named Gargantua in the movie.

This blackhole, Gargantua’s mass is 100 million times of that of the sun. It is 10 billion light years away from earth and rotates at an astounding 99.6 % of the speed of light.
We already know how a singularity is created. In case of Gargantua its mass and speed of rotation create an extremely strong gravity field, which bends the space time fabric beyond the event horizon, and pulls light and time from beyond the ascension of the singularity in the bulk. Einstein termed this as the time dilation effect experienced around a blackhole. This means, if you were close to a blackhole, then our perceptions of time and space would diverge. Relatively speaking, time would seem to be going faster for me. This is in accordance with relativity, according to which time passes slowly in high gravity fields.
In Interstellar, the planet they visit exists at a distance from the event horizon that 1 hour on the planet they visit is equal to 7 years on Earth. Graphically this dilation can be shown as shown in the following figure.

Another problem they faced during the making of the film was the scientific plausibility of the survivability of the planets orbiting close to Gargantua. Now, it seems that no planet can endure the extremely high gravitational field resulting from the blackhole, which is the reason for time dilation. However, it turned out that it in fact is possible but the condition is that the blackhole needs to be spinning very fast, fast enough that the any other object in circular orbit around Garagantua be spared the destructive effect of such a high gravitational field. Hence Garagantua rotates at 99.6 % of the speed of light.
In addition to this, the accretion disk of the blackhole also posed a problem. Accretion disks are ring like circular disks made of gases that flow into the blackhole and are comparable to rings present around Saturn. The problem with the accretion disks is that they are very energetic and emit a lot of fatal x-rays and gamma rays which should have fried the astronauts alive as soon as they reached anywhere near a blackhole of Gargantua’s size. But this was rectified by placing the blackhole in such a phase where its accretion disk is in an anemic state and is cooling down with its temperature at the time of visit similar to temperature of the surface of sun. This doesn’t emit the x-rays and gamma rays a normal energetic accretion disk would, thus not killing the astronauts as well as making life possible on the planets orbiting the blackhole. Now, of course such a cooled down state of an accretion disk has never been discovered but that is due to the lack of sensitive technology for far out space exploration, as the existing technology can only read high energy outputs and such cooled down states are invisible to it. In fact, Igor Novikov, a Russian scientist had worked out the relativistic theory of thin accretion disks back in 1970.
After making the existence of Gargantua in the movie as scientifically accurate as it was possible, the team faced the problem of creating the phenomenon on screen. For the wormhole, they had designed a new renderer which could treat light’s path curved rather than just straight, and had successfully gotten a wormhole out of it. So, they decided to use the same method for the blackhole. But blackholes as suggested by the name are a murder of light, such that light coming from a source wouldn’t keep travelling to infinity as is the property of rays, but dies within the black hole. This caused an Einstein-ian effect called gravitational lensing in the renderer due to which the bendy bits of distortion, i.e., wherever the light bent and wasn’t travelling in a straight line, overtaxed the computation such that some of the individual frames each took up to 100 hours to render. In the end the movie brushed up against 800 terabytes of data.
But the movie was in 2D, and after all this innovative imagery used in making of the blackhole, it would have ended up looking like a flat 2D disk in the 2D visual medium, despite its existence as a fully sized 3D render. Chris handed the task of making the blackhole look like a 3D sphere, rather than a flat disk to the head of the CGI team of Interstellar, Paul Franklin. He picked up the idea of using an accretion disk found around some blackholes to define its sphere. This accretion disk would later become a major plot point in the story as we all know.
Franklin had Von Tunzelmann attempt a tricky demo to try out how the blackhole looked like with an accretion disk. She generated a flat, multicolored ring- a stand-in for the accretion disk—and positioned it around their spinning black hole. This resulted in something unprecedented and extremely amazing. The space warping around the blackhole also warped the accretion disk. So instead of looking like Saturn’s ring, the light created an extraordinary halo around the blackhole.
The Double Negative team (the company working the CGI of Interstellar) thought of it as a bug until it was shown to Thorne. It lead to a moment of discovery where Thorne realized that the team had correctly modeled a phenomenon inherent in the math he’d supplied.
No one knew how would a blackhole looks like until they built one. Light, temporarily trapped around the blackhole, produced an unexpected complex fingerprint pattern near the black hole’s shadow, And the glowing accretion disk appeared above the black hole, below the blackhole, and in front of it. Thorne had never expected it, but later he realized that the phenomenon had been there in the math forever, just waiting to be unlocked. In the end Nolan got his visually immersive movie, Thorne got his wish of making a movie that taught its audience some accurate science and both of them got something they never expected, a scientific discovery. That’s why the appearance of the blackhole in the movie is visually so complex, because it’s accurate.


It’s no doubt that Interstellar came around together beautifully; the merger of real science and stunning visuals have transformed this movie into a science fiction classic, where the science is barely fictional but yet so beyond our reach that it can be realized right now only in fiction but might be tapped into in the future. Thorne also hoped that this movie might act as a bait for the viewers as some of them might be attracted towards the field of astrophysics and consider a career in it rather than become a lawyer, a doctor and other professional jobs. In writing this article, I resound the same feeling as Thorne that after reading this I hope someone starts taking the field of astrophysics seriously as their future, which is right now the field of physics with the most possibilities, with so less known and so much still to discover. And who knows? In some dystopian future, this might just save us.

Monday, 2 February 2015

On an epic journey of Science: Interstellar 1

Whether you actually agree with the science or not, Interstellar is generally considered a masterpiece. A visual treat with truly great acting and story. But that is not all Interstellar is. The visual treatment of the blackhole isn’t made out of pure imagination, though the depiction is unlike anything ever seen. The truth is it’s due to interstellar, this visual form of Interstellar was discovered. The movie actually lended itself in making of two research papers by Caltech physicist Kip Thorne one for the astrophysicist community and one for the computer graphics community, who worked as a scientific consultant for the film. I will divide this into two parts – one explaining the science used in wormholes, and the other in the blackhole.

Let’s begin with the wormhole used in the movie for interstellar travel. Before Interstellar, any and all movies depicted a wormhole as a flat circular hole in space. But under the supervision on Kip Thorne, Christopher Nolan seeked to correct that. It has always been theorized that a wormhole is a spherical hole in space-time. It is because the three dimensional universe of ours is connected by extending a singularity on both sides through the fourth dimensional space called bulk, thus any tear connecting two points in our universe have to be a spherical hole. Let’s understand this by simple graphics, of course it is impossible to represent a four dimensional space here so this graphic would use a simple trick of collapsing a dimension like we do in our eg sheets.


To understand how two singularities connect two points in space time, we must first understand how a singularity works. According to Einstein at a point in space, the presence of mass means presence of gravity. Gravity effects the local space time of its surrounding region. So when infinite density is present a point it extends the local space into the bulk, as if it were made of rubber sheet giving it a cone like projection with the tip being the singularity where the gravity and mass become infinite and time almost doesn’t exist. Such infinite mass is achieved naturally in the universe when a star collapses into itself where its mass gets concentrated in almost negligible volume, giving it almost infinite density. Let’s understand this now.


If the universal plane was considered folded, and the two singularities were extended into each other, they will form a tunnel through bulk and a shortcut through space time will be created and anyone in the plane can fall through one opening of the tunnel to reach the other end quickly. So this can be viewed as this.


Now we were understanding the model of a wormhole with one dimension collapsed with our universe visualized as 2D plane, and the opening mouth of the wormhole as a circular flat hole. But since the universe is actually three-dimensional, the opening of the wormhole would also be three dimensional and would be a spherical hole in the space. Exactly as depicted by Interstellar.
For the computer graphics team behind Interstellar, this proved to be a problem, to depict a spherical hole out of pure imagination, so the visual effects supervisor of the Interstellar team asked for help from Kip Thorne not wanting to compromise the accuracy of depiction of the phenomenon in the film, who provided him with general equations which would help the team trace behavior of light rays around a wormhole.

The first thing they made out was that light wouldn’t behave classically around a wormhole, which is it won’t travel in a straight line. Any of the rendering software available at the time wasn’t able to do so, so the CGI team had to write a completely new renderer which would be able to do so based on the equations provided by Thorne, and then rendered the wormhole. The result turned out to be nothing like what anyone could visualize. The wormhole was like a crystal ball reflecting the universe, a spherical hole in spacetime. The reflection of space if the wormhole was viewed in person would be of the space at the other end of the wormhole. This is the most accurate depiction of wormhole ever and gave new insights into the phenomenon to Kip Thorne who helped design it.
The wormhole depicted in the film is 2.5 miles in diameter and connects two points in space nearly ten billion light years apart. The most interesting part is that it accurately said to be placed there by someone, i.e. it’s not a natural phenomenon because such a merger of two singularities in the bulk is not possible without some external force which is in this case humans from far future and this information is neatly integrated into the story.


I’ll explain the same beautiful and accurate science behind the science of the blackhole Gargantua and the relative passage of time depicted in the movie in the next part. Till then watch this space for other great articles. 


Credits:
The Science of Interstellar - Kip Thorne.
Wrinkles in Space Time, The Warped astrophysics of Interstellar – Adam Rogers [Wired.com]
The Science of ‘Interstellar’ Explained – [Space.com]


Thursday, 22 January 2015

The Escapade Begins- II

Dreams to reality. It all begins with an idea. It’s beautiful to get that spark of brilliance which can change the world but it probably means nothing when it’s just in your head. The world is not in your head. And it’s hard work to transform that dream into reality. Edison failed a thousand times in his attempt to discover a durable material for the light bulb. He is respected for that. A man who stood up for his ideas; a man who was able to transform his dream into reality. Magic didn’t conjure the light bulb, his hard work did.

Nor do ideas stop there, neither has there been a shortage of people brave enough to go through anything for their ideas. Change is a byproduct of ideas when they come to exist in reality.
Change is persistent and necessary.  From the Eiffel Tower to Burj Khalifa, from the abacus to supercomputers, change always occurs and it always manages to take one by surprise.

Now imagine if there was a platform, a platform for ideas. A place where not only were they celebrated but also coaxed into reality. If everyone was aware of this place and everyone with an idea could come forward because this platform would offer them something ‘the greats’ never had. A relief from carrying all the burden of their ideas themselves. A platform where such gifted individuals helped each other while making a spectacular show of it. Imagine the change they could bring about together.

Welcome to Techideate 2K15.

Techideate is Manipal University Jaipur’s technical festival. In its second edition in 2015, it’s an innovation in itself considering it’s just the fourth year of the college. I, being a student of MUJ, am proud of it. A product of gifted minds and talented individuals, Techideate is a thing of beauty and excellence. It might still be rough around the edges considering its young age but that just makes it all the more attractive.

Techideate is truly a thing to be celebrated by anyone with an idea. Attended by entrepreneurs and luminaries alike, Techideate provides you with a chance to get your ideas supported both in terms of money and practicality. It’s like a kick starter in real life. Recognition awaits you.

MUJ’s Techideate 2K15 dates are 13th to 15th March. Till then watch this space for amazing news and write-ups.
Till then dream.
Oh, and we have robo-wars.